Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Adv ; 10(12): eadn6312, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517969

RESUMEN

Entangled photons are a key resource in quantum technologies. While intense laser light propagating in nonlinear crystals is conventionally used to generate entangled photons, such schemes have low efficiency due to the weak nonlinear response of known materials and losses associated with in/out photon coupling. Here, we show how to generate entangled polariton pairs directly within optical waveguides using free electrons. The measured energy loss of undeflected electrons heralds the production of counter-propagating polariton pairs entangled in energy and emission direction. For illustration, we study the excitation of plasmon polaritons in metal strip waveguides that strongly enhance light-matter interactions, rendering two-plasmon generation dominant over single-plasmon excitation. We demonstrate that electron energy losses detected within optimal frequency ranges can reliably signal the generation of plasmon pairs entangled in energy and momentum. Our proposed scheme is directly applicable to other types of optical waveguides for in situ generation of entangled photon pairs.

2.
Science ; 379(6632): 558-561, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36758071

RESUMEN

Negative refraction provides a platform to manipulate mid-infrared and terahertz radiation for molecular sensing and thermal emission applications. However, its implementation based on metamaterials and plasmonic media presents challenges with optical losses, limited spatial confinement, and lack of active tunability in this spectral range. We demonstrate gate-tunable negative refraction at mid-infrared frequencies using hybrid topological polaritons in van der Waals heterostructures. Specifically, we visualize wide-angle negatively refracted polaritons in α-MoO3 films partially decorated with graphene, undergoing reversible planar nanoscale focusing. Our atomically thick heterostructures weaken scattering losses at the interface while enabling an actively tunable transition of normal to negative refraction through electrical gating. We propose polaritonic negative refraction as a promising platform for infrared applications such as electrically tunable super-resolution imaging, nanoscale thermal manipulation, enhanced molecular sensing, and on-chip optical circuitry.

3.
ACS Photonics ; 9(10): 3215-3224, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36281329

RESUMEN

Spatiotemporal electron-beam shaping is a bold frontier of electron microscopy. Over the past decade, shaping methods evolved from static phase plates to low-speed electrostatic and magnetostatic displays. Recently, a swift change of paradigm utilizing light to control free electrons has emerged. Here, we experimentally demonstrate arbitrary transverse modulation of electron beams without complicated electron-optics elements or material nanostructures, but rather using shaped light beams. On-demand spatial modulation of electron wavepackets is obtained via inelastic interaction with transversely shaped ultrafast light fields controlled by an external spatial light modulator. We illustrate this method for the cases of Hermite-Gaussian and Laguerre-Gaussian modulation and discuss their use in enhancing microscope sensitivity. Our approach dramatically widens the range of patterns that can be imprinted on the electron profile and greatly facilitates tailored electron-beam shaping.

4.
Phys Rev Lett ; 127(15): 157404, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34678034

RESUMEN

Probing optical excitations with high resolution is important for understanding their dynamics and controlling their interaction with other photonic elements. This can be done using state-of-the-art electron microscopes, which provide the means to sample optical excitations with combined meV-sub-nm energy-space resolution. For reciprocal photonic systems, electrons traveling in opposite directions produce identical signals, while this symmetry is broken in nonreciprocal structures. Here, we theoretically investigate this phenomenon by analyzing electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) for structures consisting of magnetically biased InAs as an instance of gyrotropic nonreciprocal material. We find that the spectral features associated with excitations of InAs films depend on the electron propagation direction in both EELS and CL, and can be tuned by varying the applied magnetic field within a relatively modest subtesla regime. The magnetic field modifies the optical field distribution of the sampled resonances, and this in turn produces a direction-dependent coupling to the electron. The present results pave the way to the use of electron microscope spectroscopies to explore the near-field characteristics of nonreciprocal systems with high spatial resolution.

5.
Sci Adv ; 7(18)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33931451

RESUMEN

We theoretically investigate the quantum-coherence properties of the cathodoluminescence (CL) emission produced by a temporally modulated electron beam. Specifically, we consider the quantum-optical correlations of CL produced by electrons that are previously shaped by a laser field. Our main prediction is the presence of phase correlations between the emitted CL field and the electron-modulating laser, even though the emission intensity and spectral profile are independent of the electron state. In addition, the coherence of the CL field extends to harmonics of the laser frequency. Since electron beams can be focused to below 1 Å, their ability to transfer optical coherence could enable the ultra-precise excitation, manipulation, and spectrally resolved probing of nanoscale quantum systems.

6.
Light Sci Appl ; 10(1): 82, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859160

RESUMEN

The interplay between free electrons, light, and matter offers unique prospects for space, time, and energy resolved optical material characterization, structured light generation, and quantum information processing. Here, we study the nanoscale features of spontaneous and stimulated electron-photon interactions mediated by localized surface plasmon resonances at the tips of a gold nanostar using electron energy-loss spectroscopy (EELS), cathodoluminescence spectroscopy (CL), and photon-induced near-field electron microscopy (PINEM). Supported by numerical electromagnetic boundary-element method (BEM) calculations, we show that the different coupling mechanisms probed by EELS, CL, and PINEM feature the same spatial dependence on the electric field distribution of the tip modes. However, the electron-photon interaction strength is found to vary with the incident electron velocity, as determined by the spatial Fourier transform of the electric near-field component parallel to the electron trajectory. For the tightly confined plasmonic tip resonances, our calculations suggest an optimum coupling velocity at electron energies as low as a few keV. Our results are discussed in the context of more complex geometries supporting multiple modes with spatial and spectral overlap. We provide fundamental insights into spontaneous and stimulated electron-light-matter interactions with key implications for research on (quantum) coherent optical phenomena at the nanoscale.

7.
Phys Rev Lett ; 126(6): 069902, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33635719

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.126.019501.

8.
Phys Rev Lett ; 126(1): 019501, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33480801

Asunto(s)
Electrones
9.
Sci Adv ; 6(38)2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32938664

RESUMEN

Quantum dot-like single-photon sources in transition metal dichalcogenides (TMDs) exhibit appealing quantum optical properties but lack a well-defined atomic structure and are subject to large spectral variability. Here, we demonstrate electrically stimulated photon emission from individual atomic defects in monolayer WS2 and directly correlate the emission with the local atomic and electronic structure. Radiative transitions are locally excited by sequential inelastic electron tunneling from a metallic tip into selected discrete defect states in the WS2 bandgap. Coupling to the optical far field is mediated by tip plasmons, which transduce the excess energy into a single photon. The applied tip-sample voltage determines the transition energy. Atomically resolved emission maps of individual point defects closely resemble electronic defect orbitals, the final states of the optical transitions. Inelastic charge carrier injection into localized defect states of two-dimensional materials provides a powerful platform for electrically driven, broadly tunable, atomic-scale single-photon sources.

10.
Phys Rev Lett ; 125(3): 037403, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32745382

RESUMEN

Transient optical heating provides an efficient way to trigger phase transitions in naturally occurring media through ultrashort laser pulse irradiation. A similar approach could be used to induce topological transitions in the photonic response of suitably engineered artificial structures known as metamaterials. Here, we predict a topological transition in the isofrequency dispersion contours of a layered graphene metamaterial under optical pumping. We show that the contour topology transforms from elliptic to hyperbolic within a subpicosecond timescale by exploiting the extraordinary photothermal properties of graphene. This new phenomenon allows us to theoretically demonstrate applications in engineering the decay rate of proximal optical emitters, ultrafast beam steering, and dynamical far-field subwavelength imaging. Our study opens a disruptive approach toward ultrafast control of light emission, beam steering, and optical image processing.

11.
Phys Rev Lett ; 125(3): 030801, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32745398

RESUMEN

The interaction between free electrons and optical near fields is attracting increasing attention as a way to manipulate the electron wave function in space, time, and energy. Relying on currently attainable experimental capabilities, we design optical near-field plates to imprint a lateral phase on the electron wave function that can largely correct spherical aberration without the involvement of electric or magnetic lenses in the electron optics, and further generate on-demand lateral focal spot profiles. Our work introduces a disruptive and powerful approach toward aberration correction based on light-electron interactions that could lead to compact and versatile time-resolved free-electron microscopy and spectroscopy.

12.
Nat Commun ; 10(1): 1069, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824703

RESUMEN

The authors became aware of a mistake in the original version of this Article. Specifically, an extra factor γ was incorrectly included in a number of mathematical equations and expressions. As a result of this, a number of changes have been made to both the PDF and the HTML versions of the Article. A full list of these changes is available online.

13.
Phys Rev Lett ; 121(16): 163602, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30387662

RESUMEN

We explore the ability of two-dimensional periodic atom arrays to produce light amplification and generate laser emission when gain is introduced through external optical pumping. Specifically, we predict that lasing can take place for arbitrarily weak atomic scatterers assisted by cooperative interaction among atoms in a 2D lattice. We base this conclusion on analytical theory for three-level scatterers, which additionally reveals a rich interplay between lattice and atomic resonances. Our results provide a general background to understand light amplification and lasing in periodic atomic arrays, with promising applications in the generation, manipulation, and control of coherent photon states at the nanoscale.

14.
Nat Commun ; 8: 14380, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28224998

RESUMEN

High-harmonic generation in condensed-matter systems is both a source of fundamental insight into quantum electron motion and a promising candidate to realize compact ultraviolet and ultrafast light sources. While graphene is anticipated to efficiently generate high-order harmonics due to its anharmonic charge-carrier dispersion, experiments performed on extended samples using THz illumination have revealed only a weak effect. The situation is further complicated by the enormous electromagnetic field intensities required by this highly nonperturbative nonlinear optical phenomenon. Here we argue that the large light intensity required for high-harmonic generation to occur can be reached by exploiting localized plasmons in doped graphene nanostructures. We demonstrate through rigorous time-domain simulations that the synergistic combination of strong plasmonic near-field enhancement and a pronounced intrinsic nonlinearity result in efficient broadband high-harmonic generation within a single material. Our results support the strong potential of nanostructured graphene as a robust, electrically tunable platform for high-harmonic generation.

15.
Phys Rev Lett ; 117(12): 123904, 2016 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-27689278

RESUMEN

Plasmons provide excellent sensitivity to detect analyte molecules through their strong interaction with the dielectric environment. Plasmonic sensors based on noble metals are, however, limited by the spectral broadening of these excitations. Here we identify a new mechanism that reveals the presence of individual molecules through the radical changes that they produce in the plasmons of graphene nanoislands. An elementary charge or a weak permanent dipole carried by the molecule are shown to be sufficient to trigger observable modifications in the linear absorption spectra and the nonlinear response of the nanoislands. In particular, a strong second-harmonic signal, forbidden by symmetry in the unexposed graphene nanostructure, emerges due to a redistribution of conduction electrons produced by interaction with the molecule. These results pave the way toward ultrasensitive nonlinear detection of dipolar molecules and molecular radicals that is made possible by the extraordinary optoelectronic properties of graphene.

16.
Phys Rev Lett ; 115(17): 173601, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26551115

RESUMEN

We show that a single quantum emitter can efficiently couple to the tunable plasmons of a highly doped single-wall carbon nanotube (SWCNT). Plasmons in these quasi-one-dimensional carbon structures exhibit deep subwavelength confinement that pushes the coupling efficiency close to 100% over a very broad spectral range. This phenomenon takes place for distances and tube diameters comprising the nanometer and micrometer scales. In particular, we find a ß factor ≈1 for QEs placed 1-100 nm away from SWCNTs that are just a few nanometers in diameter, while the corresponding Purcell factor exceeds 10(6).

17.
Nanoscale ; 6(4): 2077-81, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24424350

RESUMEN

3D plasmonic chiral colloids are synthesized through deterministically grouping of two gold nanorod AuNRs on DNA origami. These nanorod crosses exhibit strong circular dichroism (CD) at optical frequencies which can be engineered through position tuning of the rods on the origami. Our experimental results agree qualitatively well with theoretical predictions.


Asunto(s)
ADN/química , Oro/química , Nanotubos/química , Dicroismo Circular
18.
Nano Lett ; 14(1): 299-304, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24320874

RESUMEN

If not for its inherently weak optical absorption at visible and infrared wavelengths, graphene would show exceptional promise for optoelectronic applications. Here we show that by nanopatterning a graphene layer into an array of closely packed graphene nanodisks, its absorption efficiency can be increased from less than 3% to 30% in the infrared region of the spectrum. We examine the dependence of the enhanced absorption on nanodisk size and interparticle spacing. By incorporating graphene nanodisk arrays into an active device, we demonstrate that this enhanced absorption efficiency is voltage-tunable, indicating strong potential for nanopatterned graphene as an active medium for infrared electro-optic devices.

19.
Nat Nanotechnol ; 8(3): 175-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23396312

RESUMEN

Nitrogen vacancy (NV) centres in diamond are promising elemental blocks for quantum optics, spin-based quantum information processing and high-resolution sensing. However, fully exploiting the capabilities of these NV centres requires suitable strategies to accurately manipulate them. Here, we use optical tweezers as a tool to achieve deterministic trapping and three-dimensional spatial manipulation of individual nanodiamonds hosting a single NV spin. Remarkably, we find that the NV axis is nearly fixed inside the trap and can be controlled in situ by adjusting the polarization of the trapping light. By combining this unique spatial and angular control with coherent manipulation of the NV spin and fluorescence lifetime measurements near an integrated photonic system, we demonstrate individual optically trapped NV centres as a novel route for both three-dimensional vectorial magnetometry and sensing of the local density of optical states.


Asunto(s)
Electrones , Nitrógeno/química , Fotones , Nanotecnología/tendencias , Puntos Cuánticos
20.
Nature ; 483(7390): 417-8, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22437610
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...